These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of apical and basolateral K+ conductances in rat colon.
    Author: Schultheiss G, Diener M.
    Journal: Br J Pharmacol; 1997 Sep; 122(1):87-94. PubMed ID: 9298532.
    Abstract:
    1. Apical administration of an ionophore, nystatin, and basolateral depolarization by K+ were used to investigate the regulation of apical and basolateral electrogenic transport pathways for K+ in the rat proximal and distal colon. 2. Administration of nystatin (100 micrograms ml-1 at the mucosal side), in the presence of Na+ and in the presence of a serosally directed K+ gradient, stimulate a large increase in short-circuit current (ISC) and tissue conductance in both colonic segments. This response was composed of a pump current generated by the Na(+)-K(+)-ATPase and of a current cross a quinine-sensitive basolateral K+ conductance. 3. The pump current, measured as Na(+)-dependent or scilliroside-sensitive current in the absence of a K+ gradient, was significantly greater in the distal than in the proximal colon. The pump current was unaltered by pretreatment of the tissue with forskolin (5 x 10(-6) mol 1(-1)). 4. The current across the basolateral K+ conductance, measured as current in the presence of a serosally directed K+ gradient either in the absence of Na+ or in the presence of scilliroside, was increased by the cholinoreceptor agonist, carbachol (5 x 10(-5) mol 1(-1)), but inhibited by forskolin (5 x 10(-6) mol 1(-1)). 5. Basolateral K+ depolarization induced a negative ISC in both colonic segments, which was inhibited by the K+ channel blocker quinine (10(-3) mol 1(-1)) at the mucosal side), but was resistant to tetraethylammonium (5 x 10(-3) mol 1(-1) at the mucosal side). This K+ current across an apical K+ conductance was stimulated in both colonic segments by carbachol, whereas forskolin had no effect, although control experiments revealed that forskolin was still able to open an apical Cl- conductance under these conditions. 6. These results demonstrate that an increase in intracellular Ca2+ concentration induced by carbachol causes an increase in the basolateral and the apical K+ conductance, thereby inducing K+ secretion in parallel with an indirect support of Cl- secretion due to the hyperpolarization of the cell membrane. In contrast, the dominating effect of an increase in the intracellular cyclic AMP concentration is inhibition of a basolateral K+ conductance; a mechanism which might contribute to the inhibition of K+ absorption.
    [Abstract] [Full Text] [Related] [New Search]