These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Immortalized connexin43 knockout cell lines display a subset of biological properties associated with the transformed phenotype.
    Author: Martyn KD, Kurata WE, Warn-Cramer BJ, Burt JM, TenBroek E, Lau AF.
    Journal: Cell Growth Differ; 1997 Sep; 8(9):1015-27. PubMed ID: 9300183.
    Abstract:
    Immortalized cells from embryonic connexin43 knockout mice (Cx43-/-) and homozygous littermates (Cx43+/+) were cloned and characterized to determine whether the absence of Cx43 function would induce observable phenotypic changes. Cells of the Cx43+/+ clones expressed Cx43 and engaged in gap junctional communication with 10-12 neighboring cells. The Cx43-/- cells were devoid of Cx43 and communicated to less than 1 cell. Electrophysiological analysis indicated that the Cx43-/- cells communicated through Cx45 channels from 8-80-fold less than did the Cx43+/+ subclones, which seemed to communicate through Cx43 and Cx45 channels. The Cx43-/- clones grew at faster rates and to higher saturation densities, had a more spindly morphology, were more refractile, and adhered less well to the substratum than did the Cx43+/+ clones. Reintroducing the Cx43 gene into the Cx43-/- clones resulted in three subclones that communicated to 3-4 cells. Partial restoration of gap junctional communication in the three subclones was accompanied by reduced growth rates and saturation densities (2-fold compared to that of parental Cx43-/- clones) but no reversions in morphology or cell-substratum adhesion. The increased growth rates and saturation densities, altered morphology, and decreased cell adhesion displayed by the Cx43-/- clones reflect a subset of the properties of transformed cells. These studies advance the hypothesis that loss of Cx43 function during development may cause cells to acquire a preneoplastic condition.
    [Abstract] [Full Text] [Related] [New Search]