These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Basal expression, subcellular distribution, and up-regulation of the proto-oncogene c-JUN in the rat dentate gyrus after unilateral entorhinal cortex lesion.
    Author: Haas CA, Deller T, Frotscher M.
    Journal: Neuroscience; 1997 Nov; 81(1):33-45. PubMed ID: 9300399.
    Abstract:
    The expression of the transcription factor c-JUN was investigated in the rat fascia dentata under normal conditions and after entorhinal cortex lesion. As shown by immunocytochemistry and in situ hybridization histochemistry c-JUN and its messenger RNA are present in the principal cell layers of the dentate gyrus and Ammon's horn (except hippocampal region CA2). Pre-embedding immunogold electron microscopy revealed an almost exclusive nuclear localization of c-JUN, where it is associated with chromatin. In addition, double immunolabelling for c-JUN and parvalbumin demonstrated that c-JUN immunoreactivity is primarily found in principal neurons since GABAergic parvalbumin-positive interneurons did not express c-JUN. After unilateral electrolytic lesion of the entorhinal cortex c-JUN was strongly up-regulated in the ipsilateral dentate gyrus within 2 h postlesion. This up-regulation was also present in the contralateral fascia dentata 12 h after entorhinal cortex lesion and returned to control levels on both sides 24 h postlesion. The cellular distribution of c-JUN did not change after entorhinal cortex lesion: parvalbumin-positive interneurons never contained c-JUN. These results point to a specific role of c-JUN in the granule cells of the fascia dentata in the normal animal and in rats with entorhinal cortex lesions. The selective induction of c-JUN after entorhinal lesion could be one of the first molecular steps that regulate transneuronal changes within granule cells after their denervation. A different mechanism has to be assumed for GABAergic interneurons known to receive an entorhinal innervation as well.
    [Abstract] [Full Text] [Related] [New Search]