These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High sodium intake increases the urinary excretion of L-3,4-dihydroxyphenylalanine but fails to alter the urinary excretion of dopamine and amine metabolites in Wistar rats. Author: Vieira-Coelho MA, Pestana M, Soares-da-Silva P. Journal: Gen Pharmacol; 1996 Dec; 27(8):1421-7. PubMed ID: 9304419. Abstract: 1. The present study has examined the daily urinary excretion of L-DOPA, dopamine and its metabolites (DOPAC, 3-MT and HVA) during normal salt (NS) and high salt(HS) diets. 2. Daily urinary excretion of L-DOPA, DA, DOPAC, 3-MT and HVA during the 4-day period of NS diet averaged, respectively, 7.6 +/- 0.4, 71 +/- 5, 217 +/- 22, 570 +/- 90 and 1217 +/- 110 nmol/kg/day. The slight increase in the urinary excretion of DA, DOPAC and 3-MT (16% to 42% increase), when rats were fed a HS diet, did not achieve statistical significance. 3. In contrast, the urinary levels of L-DOPA during the HS diet period (11 +/- 1 nmol/kg/day) were found to be significantly higher than during the NS diet period; the maximal increase in the urinary excretion of L-DOPA (93% increase) was observed in the first day and then a progressive decline was observed towards the end of the HS intake period. 4. During the first 5 days of the HS intake period, the urine output of noradrenaline (NA) was found to increase (27% to 83%) and then to progressively decline to baseline values (13.5 +/- 0.7 nmol/ kg/day). Urinary excretion of adrenaline (AD) during the HS intake period was found to increase (72% to 146%); the mean daily urinary excretion of AD during the NS diet period averaged 2.5 +/- 0.4 nmol/ kg/day. NS and DA contents in the kidney of rats on a NS diet were not significantly different from that of rats in a HS diet. 6. It is concluded that long-term HS intake in Wistar rats fail to change the urinary excretion of DA and of its metabolites (DOPAC, 3-MT and HVA). Furthermore, the discrepant profile in the urinary excretion of L-DOPA and DA during HS intake might be related to a reduction in the tubular uptake of the amino acid, rather than reflecting a decrease in its decarboxylation.[Abstract] [Full Text] [Related] [New Search]