These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glutathione/Fe3+/O2-mediated DNA strand breaks and 8-hydroxydeoxyguanosine formation. Enhancement by copper, zinc superoxide dismutase. Author: Park JW, Floyd RA. Journal: Biochim Biophys Acta; 1997 Aug 29; 1336(2):263-8. PubMed ID: 9305798. Abstract: Oxidative DNA damage reflected by the formation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) and strand breaks caused by a glutathione mixed-function oxidation system (GSH-MFO) comprised of Fe3+, O2, and glutathione as an electron donor was enhanced by copper, zinc superoxide dismutase (CuZnSOD) in a concentration-dependent manner. Unlike CuZnSOD, manganese SOD (MnSOD) as well as iron SOD (FeSOD) did not enhance either strand breaks or 8-OH-dH formation in DNA. The capacity of CuZnSOD to enhance damage to DNA was inhibited by 5,5-dimethyl-1-pyrroline N-oxide (DMPO), a spin trapping agent. The salicylate hydroxylation assay showed that hydroxyl radicals formed in the presence of the GSH-MFO system was increased by CuZnSOD. The GSH-MFO system caused the release of free copper from CuZnSOD. Based on these results, we interpret the effects of CuZnSOD on the GSH-MFO induced DNA damage as due to reactive oxygen species, probably .OH, formed by the reaction of free Cu2+, released from oxidatively damaged CuZnSOD, and H2O2 produced by the GSH-MFO system.[Abstract] [Full Text] [Related] [New Search]