These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanism of myosin subfragment-1-induced assembly of CaG-actin and MgG-actin into F-actin-S1-decorated filaments.
    Author: Fievez S, Carlier MF, Pantaloni D.
    Journal: Biochemistry; 1997 Sep 30; 36(39):11843-50. PubMed ID: 9305976.
    Abstract:
    The kinetics and mechanism of myosin subfragment-1-induced polymerization of G-actin into F-actin-S1-decorated filaments have been investigated in low ionic strength buffer and in the absence of free ATP. The mechanism of assembly of F-actin-S1 differs from salt-induced assembly of F-actin. Initial condensation of G-actin and S1 into oligomers in reversible equilibrium is a prerequisite step in the formation of F-actin-S1 . Oligomers have a relatively low stability (10(6) M-1) and contain S1 in a molar ratio to actin close to 0.5. Increased binding of S1 up to a 1:1 molar ratio to actin is associated with further irreversible condensation of oligomers into large F-actin-S1 structures of very high stability. In contrast to salt-induced assembly of F-actin, no monomer-polymer equilibrium, characterized by a critical concentration, can be defined for F-actin-S1 assembly, and end-to-end annealing of oligomers is predominant over growth from nuclei in the kinetics. Simultaneous recordings of the changes in light scattering, pyrenyl- and NBD-actin fluorescence, ATP hydrolysis, and release of Pi during the polymerization process have been analyzed to propose a minimum kinetic scheme for assembly, within which several elementary steps, following oligomer formation, are required for assembly of F-actin-S1. ATP hydrolysis occurs before polymerization of MgATP-G-actin but not of CaATP-G-actin. The release of inorganic phosphate occurs on F-actin-S1 at the same rate as on F-actin.
    [Abstract] [Full Text] [Related] [New Search]