These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Scorpion toxin block of the early K+ current (IKf) in rat dorsal root ganglion neurones. Author: Matteson DR, Blaustein MP. Journal: J Physiol; 1997 Sep 01; 503 ( Pt 2)(Pt 2):285-301. PubMed ID: 9306273. Abstract: 1. The ability of three structurally homologous scorpion toxins to block voltage-dependent K+ currents in rat dorsal root ganglion neurones was examined using the patch-clamp technique. 2. Neurones with a diameter > 35 microns had two identifiable components of macroscopic K+ current. The outward current during depolarizations had both inactivating and non-inactivating components, and the tail currents had both a fast component (IKf) with a time constant of about 2.5 ms and a slow component (IKs) with a time constant of about 10 ms. 3. The functional properties of IKf and IKs differed in several ways: (i) IKf activated over a more negative voltage range than IKs; (ii) IKf partially inactivated during a depolarization to +70 mV, whereas IKs did not inactivate during a 1 s depolarization to +70 mV; (iii) IKf activated more rapidly than IKs; and (iv) alpha-dendrotoxin selectively blocked IKf. 4. Tityustoxin-K alpha (TsTX-K alpha) selectively blocked IKf, with little or no effect on IKs. The block was concentration dependent, with 50% of the current inhibited at a toxin concentration of about 38 nM. 5. TsTX-K alpha block of IKf was completely reversible, but the washout rate was slow. The time constant of recovery from TsTX-K alpha block was about 11 min. 6. Charybdotoxin (CTX) also selectively blocked IKf in a reversible manner, but was about 10 times less potent than TsTX-K alpha. The CTX washout rate was over 10 times faster than that of TsTX-K alpha; the time constant of recovery was 0.8 min. 7. Pandinotoxin-K alpha (PiTX-K alpha) also selectively blocked IKf; the IC50 for block of IKf was about 8.1 nM. In contrast to the other two toxins, however, PiTX-K alpha was poorly reversible. 8. The block of IKf produced by CTX was voltage dependent. In the voltage range from -10 to +70 mV, the fraction of blocked IKf fell from 91 to 37%. In contrast, both TsTX-K alpha and PiTX-K alpha blocked IKf in a voltage-independent manner. 9. The backbone structure and many of the amino acid side-chains on the presumed docking surfaces of the toxins are identical or conservatively replaced in all three toxins. Thus, some small differences in a few side-chains that influence electrostatic, hydrophobic/hydrophilic and/or steric interactions probably account for the marked differences in affinities and dissociation rates.[Abstract] [Full Text] [Related] [New Search]