These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation of Ca2+ currents by various G protein-coupled receptors in sympathetic neurons of male rat pelvic ganglia.
    Author: Zhu Y, Yakel JL.
    Journal: J Neurophysiol; 1997 Aug; 78(2):780-9. PubMed ID: 9307112.
    Abstract:
    The modulation of voltage-gated calcium (Ca2+) channels by various G protein-coupled receptor pathways was investigated in sympathetic neurons of the male rat major pelvic ganglion (MPG). Standard whole cell patch-clamp recording techniques were used to record Ca2+ currents from acutely dissociated neurons. The activation of muscarinic receptors, which uses a G protein pathway that was not blocked by either pertussis toxin (PTX) or cholera toxin (CTX), inhibited both N-type and L-type Ca2+ channels. The activation of alpha2 noradrenergic receptors with the selective agonist UK14304, which used primarily a PTX-sensitive G protein pathway, inhibited only N-type Ca2+ channels. The activation of vasoactive intestinal polypeptide (VIP) receptors, which used a CTX-sensitive G protein pathway, also inhibited only N-type Ca2+ channels. UK14304 and VIP induced a bell-shaped inhibition of the Ca2+ current with a peak inhibition at around +10 mV and decreasing inhibition at more positive potentials. In contrast, the muscarine-induced Ca2+ current inhibition was not bell shaped and was more prominent at more positive potentials. Furthermore, a large depolarization, which relieved the current inhibition by UK14304 and VIP, did not relieve the inhibition by muscarine. Besides inhibiting the Ca2+ current, UK14304 and VIP also slowed the activation kinetics, an effect not seen with muscarine. Replacing external Ca2+ with Ba2+ and replacing internal ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) with high bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA) completely blocked the inhibitory effect of muscarine. However, the inhibitory effects of both UK14304 and VIP were unaffected under these conditions. Surprisingly, the facilitation of the Ca2+ current was eliminated under these strong calcium-buffering conditions. The activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA) increases the amplitude of the Ca2+ current, diminishes facilitation, and reduces the inhibition of this current by UK14304 and VIP. However, PKC activation did not reduce the muscarine-induced Ca2+ current inhibition. In summary, our data suggest that muscarine uses a mechanism different from UK14304 and VIP to modulate the N-type Ca2+ channels in sympathetic neurons of the MPG. Although VIP and UK14304 use different G protein pathways, these two different pathways most likely converge downstream to compete for the same target site on the N-type Ca2+ channels.
    [Abstract] [Full Text] [Related] [New Search]