These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 2-Chloroethyl-3-sarcosinamide-1-nitrosourea, a novel chloroethylnitrosourea analogue with enhanced antitumor activity against human glioma xenografts.
    Author: Marcantonio D, Panasci LC, Hollingshead MG, Alley MC, Camalier RF, Sausville EA, Dykes DJ, Carter CA, Malspeis L.
    Journal: Cancer Res; 1997 Sep 15; 57(18):3895-8. PubMed ID: 9307267.
    Abstract:
    Nitrosoureas are among the most widely used agents used in the treatment of malignant gliomas. Here, the activity of 2-chloroethyl-3-sarcosinamide-1-nitrosourea (SarCNU) was compared with that of 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU), in vivo against s.c. implanted SF-295 and U-251 central nervous system (CNS) tumor xenografts. When given i.v., q4d for 3 doses, to athymic mice bearing s.c. SF-295 tumors, SarCNU, at an optimum of 167 mg/kg/dose, produced 9 tumor-free animals of 10 total animals, 1 regression, and no evidence of overt toxicity (> or =20% body weight loss). With a similar dosing schedule, BCNU produced no tumor-free animals, six regressions, and one drug-related death at its optimum of 30 mg/kg/dose. Furthermore, SarCNU retained high antitumor activity at two lower dose levels, 66 and 45% of the optimal dose, whereas BCNU demonstrated a progressive loss of antitumor activity at lower doses. Following p.o. administration, SarCNU similarly demonstrated antitumor activity that was superior to that of BCNU. In the U-251 CNS tumor model, SarCNU yielded six of six tumor-free animals at 80 mg/kg/dose with i.p. administration q.d. for 5 days, starting on day 14, whereas BCNU, at 9 mg/kg/dose, yielded three of six tumor-free mice and one drug-related death. Again, SarCNU resulted in tumor-free animals at 66 and 45% of its optimal dose and was relatively nontoxic, in contrast to BCNU. Results of testing to date indicate that SarCNU is clearly more effective than BCNU against the human CNS tumors SF-295 and U-251 in vivo. These results encourage the initiation of clinical trials for SarCNU, in an effort to improve therapeutic approaches to glioma, but clinical trials must determine whether superiority of SarCNU in preclinical models can be extrapolated to patients.
    [Abstract] [Full Text] [Related] [New Search]