These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synaptic activation of Ca2+ action potentials in immature rat cerebellar granule cells in situ. Author: D'Angelo E, De Filippi G, Rossi P, Taglietti V. Journal: J Neurophysiol; 1997 Sep; 78(3):1631-42. PubMed ID: 9310448. Abstract: Although numerous Ca2+ channels have been identified in cerebellar granule cells, their role in regulating excitability remained unclear. We therefore investigated the excitable response in granule cells using whole cell patch-clamp recordings in acute rat cerebellar slices throughout the time of development (P4-P21, n = 183), with the aim of identifying the role of Ca2+ channels and their activation mechanism. After depolarizing current injection, 46% of granule cells showed Ca2+ action potentials, whereas repetitive Na+ spikes were observed in an increasing proportion of granule cells from P4 to P21. Because Ca2+ action potentials were no longer observed after P21, they characterized an immature granule cell functional stage. Ca2+ action potentials consisted of an intermediate-threshold spike (ITS) activating at -60/-50 mV and sensitive to voltage inactivation and of a high-threshold spike (HTS), activating at above -30 mV and resistant to voltage inactivation. Both ITS and HTS comprised transient and protracted Ca2+ channel-dependent depolarizations. The Ca2+ action potentials could be activated synaptically by excitatory postsynaptic potentials, which were significantly slower and had a proportionately greater N-methyl-D-aspartate (NMDA) receptor-mediated component than those recorded in cells with fast repetitive Na+ spikes. The NMDA receptor current, by providing a sustained and regenerative current injection, was critical for activating the ITS, which was not self-regenerative. Moreover, NMDA receptors determined temporal summation of impulses during repetitive mossy fiber transmission, raising membrane potential into the range required for generating protracted Ca2+ channel-dependent depolarizations. The nature of Ca2+ action potentials was considered further using selective ion channel blockers. N-, L-, and P-type Ca2+ channels generated protracted depolarizations, whereas the ITS and HTS transient phase was generated by putative R-type channels (R(ITS) and R(HTS), respectively). R(HTS) channels had a higher activation threshold and were more resistant to voltage inactivation than R(ITS) channels. At a mature stage, most of the Ca2+-dependent effects depended on the N-type current, which promoted spike repolarization and regulated the Na+-dependent discharge frequency. These observations relate Ca2+ channel types with specific neuronal excitable properties and developmental states in situ. Synaptic NMDA receptor-dependent activation of Ca2+ action potentials provides a sophisticated mechanism for Ca2+ signaling, which might be involved in granule cell development and plasticity.[Abstract] [Full Text] [Related] [New Search]