These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Clusters of multiple different small nucleolar RNA genes in plants are expressed as and processed from polycistronic pre-snoRNAs. Author: Leader DJ, Clark GP, Watters J, Beven AF, Shaw PJ, Brown JW. Journal: EMBO J; 1997 Sep 15; 16(18):5742-51. PubMed ID: 9312032. Abstract: Small nucleolar RNAs (snoRNAs) are involved in many aspects of rRNA processing and maturation. In animals and yeast, a large number of snoRNAs are encoded within introns of protein-coding genes. These introns contain only single snoRNA genes and their processing involves exonucleolytic release of the snoRNA from debranched intron lariats. In contrast, some U14 genes in plants are found in small clusters and are expressed polycistronically. An examination of U14 flanking sequences in maize has identified four additional snoRNA genes which are closely linked to the U14 genes. The presence of seven and five snoRNA genes respectively on 2.05 and 0.97 kb maize genomic fragments further emphasizes the novel organization of plant snoRNA genes as clusters of multiple different genes encoding both box C/D and box H/ACA snoRNAs. The plant snoRNA gene clusters are transcribed as a polycistronic pre-snoRNA transcript from an upstream promoter. The lack of exon sequences between the genes suggests that processing of polycistronic pre-snoRNAs involves endonucleolytic activity. Consistent with this, U14 snoRNAs can be processed from both non-intronic and intronic transcripts in tobacco protoplasts such that processing is splicing independent.[Abstract] [Full Text] [Related] [New Search]