These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The interactive effects of feeding and exercise on oxygen consumption, swimming performance and protein usage in juvenile rainbow trout (Oncorhynchus mykiss).
    Author: Alsop D, Wood C.
    Journal: J Exp Biol; 1997; 200(Pt 17):2337-46. PubMed ID: 9320259.
    Abstract:
    The impacts of feeding on the rate of O2 consumption (O2), aerobic swimming performance, nitrogenous waste excretion (ammonia-N and urea-N) and protein utilization as an aerobic fuel were investigated in juvenile rainbow trout. Feeding trout to satiation (in groups of 120) resulted in rapid growth and elevated routine O2 by 68% relative to fasted fish and by 30% relative to trout fed a maintenance ration of 1% of body mass daily. This in-tank O2 of satiation-fed trout was approximately 70% of the O2max observed at the critical swimming speed (UCrit) when trials were performed on individual trout in swimming respirometers. Feeding increased O2 at all swimming speeds; the absolute elevation (specific dynamic action or SDA effect) was dependent on ration but independent of swimming velocity. There was no difference in O2max at UCrit amongst different ration treatments, but UCrit was significantly reduced by 15% in satiation-fed fish relative to fasted fish. These results suggest that the irreducible SDA load reduces swimming performance and that O2max is limited by the capacity to take up O2 at the gills and/or to deliver O2 through the circulatory system rather than by the capacity to consume O2 at the tissues. Ammonia-N and urea-N excretion increased with protein intake, resulting in a 6.5-fold elevation in absolute protein use and a fourfold elevation in percentage use of protein as an aerobic fuel for routine metabolism in satiation-fed trout (50-70%) relative to fasted fish (15%). Urea-N excretion increased greatly with swimming speed in all treatments, but remained a minor component of overall nitrogen excretion. However, even in satiation-fed fish, ammonia-N excretion remained constant as swimming speed increased, and protein did not become more important as a fuel source during exercise. These results suggest that the reliance on protein as a fuel is greatly dependent on feeding quantity (protein intake) and that protein is not a primary fuel for exercise as suggested by some previous studies.
    [Abstract] [Full Text] [Related] [New Search]