These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ins(1,4,5)P3 and arrhythmogenic responses during myocardial reperfusion: evidence for receptor specificity.
    Author: Jacobsen AN, Du XJ, Dart AM, Woodcock EA.
    Journal: Am J Physiol; 1997 Sep; 273(3 Pt 2):H1119-25. PubMed ID: 9321797.
    Abstract:
    Reperfusion of ischemic rat hearts initiates the generation of inositol(1,4,5)trisphosphate [Ins(1,4,5)P3] and arrhythmias, provided that either norepinephrine or thrombin is present. In the current study, effects on endothelin-1 (ET-1) responses were investigated. Reperfusion of catecholamine-depleted, [3H]inositol-labeled hearts in the presence of ET-1 caused an increase in [3H]inositol phosphates (7,073 +/- 1,004 to 17,300 +/- 206 counts.min-1.g tissue-1, means +/- SE, n = 4, P < 0.01), which was quantitatively greater than the release observed under normoxic conditions, but there was no increase in [3H]Ins(1,4,5)P3. Gentamicin (150 microM) inhibited inositol phosphate responses in the presence of either norepinephrine or thrombin but did not inhibit the response to ET-1, providing additional evidence that the inositol phosphate response to ET-1 does not involve formation of Ins(1,4,5)P3, even under reperfusion conditions. In contrast to norepinephrine and thrombin, ET-1 did not initiate reperfusion arrhythmias (4.4% ventricular fibrillation compared with 0% ventricular fibrillation in catecholamine-depleted controls). The data provide strong evidence that the effect of ischemia-reperfusion on inositol phosphate responses is specific for particular receptor types and eliminates G proteins, phospholipase C enzymes, and substrate availability as the primary factors responsible for Ins(1,4,5)P3 generation under reperfusion conditions.
    [Abstract] [Full Text] [Related] [New Search]