These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electroencephalogram activity in the anoxic turtle brain.
    Author: Fernandes JA, Lutz PL, Tannenbaum A, Todorov AT, Liebovitch L, Vertes R.
    Journal: Am J Physiol; 1997 Sep; 273(3 Pt 2):R911-9. PubMed ID: 9321867.
    Abstract:
    The anoxia-tolerant turtle brain slowly undergoes a complex sequence of changes in electroencephalogram (EEG) activity as the brain systematically downregulates its energy demands. Following N2 respiration, the root mean square voltage rapidly fell, reaching approximately 20% of normoxic levels after approximately 100 min of anoxia. During the first 20- to 40-min transition period, the power of the EEG decreased substantially, particularly in the 12- to 24-Hz band, with low-amplitude slow wave activity predominating (3-12 Hz). Bursts of high voltage rhythmic slow (approximately 3-8 Hz) waves were seen during the 20- to 100-min period of anoxia, accompanied by large sharp waves. During the next 400 min of N2 respiration, two distinct patterns of electrical activity characterized the anoxic turtle brain: 1) a sustained but depressed activity level, with an EEG amplitude approximately 20% of the normoxic control and with total EEG power reduced by one order of magnitude at all frequencies, and 2) short (3-15 s) periodic (0.5-2/min) bursts of mixed-frequency activity that interrupted the depressed activity state. We speculate that the EEG patterns seen during sustained anoxia represent the minimal or basic electrical activities that are compatible with the survival of the anoxic turtle brain as an integrated unit, which allow the brain to return to normal functioning when air respiration resumed.
    [Abstract] [Full Text] [Related] [New Search]