These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer. Author: Katayose S, Kataoka K. Journal: Bioconjug Chem; 1997; 8(5):702-7. PubMed ID: 9327134. Abstract: Complex formation of poly(ethylene glycol)-poly(L-lysine) (PEG-PLL) AB type block copolymer with salmon testes DNA or Col E1 plasmid DNA in aqueous milieu was studied. The PLL segment of PEG-PLL interacts with nucleic acid through an electrostatic force to form a water-soluble complex associate with a diameter of ca. 50 nm. PEG segments surrounding the core of the polyion complex prevented the complex from precipitation even under stoichiometric conditions, at which the unit ratio of L-lysine in PEG-PLL and phosphate in the DNA is equal. The profile of the thermal melting curve revealed a higher stabilization of DNA structure in PEG-PLL/DNA complexes compared to that in the complex made from DNA and PLL homopolymer with the same molecular weight as the PLL segment in PEG-PLL. This stabilizing effect on the DNA structure may be due to the compartmentalization of DNA into the microenvironment of PEG with low permittivity. The reversible nature of the PEG-PLL/DNA complex was further verified through the addition of polyanion [poly-(L-aspartic acid)]: Poly(L-aspartic acid) replaced DNA in the complex with PEG-PLL, resulting in the release of free DNA in the medium. Furthermore, the PEG-PLL/DNA complex showed high resistance against DNase I attack, suggesting DNA protection through the segregation into the core of the associate having PEG palisade.[Abstract] [Full Text] [Related] [New Search]