These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparison of the kinetic effects of phospholamban phosphorylation and anti-phospholamban monoclonal antibody on the calcium pump in purified cardiac sarcoplasmic reticulum membranes. Author: Antipenko AY, Spielman AI, Sassaroli M, Kirchberger MA. Journal: Biochemistry; 1997 Oct 21; 36(42):12903-10. PubMed ID: 9335549. Abstract: Protein kinase A- (PKA-) catalyzed phosphorylation of phospholamban (PLN), the protein regulator of the cardiac Ca pump, mediates abbreviation of systole in response to beta-adrenergic agonists. Investigators previously, however, have been unsuccessful in demonstrating an effect of PLN phosphorylation or anti-PLN monoclonal antibody (mAb), which is considered to mimic phosphorylation's well-known effect on Km(Ca), on microsomal Ca uptake at the (high) Ca2+ concentrations found intracellularly at peak systole. We therefore compared the effects of the catalytic subunit of PKA and anti-PLN mAb on the kinetics of Ca uptake in sucrose gradient-purified cardiac microsomes. Both treatments produced a 33-44% increase in Vmax(Ca) at 25 and 37 degrees C, and an 11-31% decrease in Km(Ca) with comparable changes in Ca2+-ATPase activity. An acceleration of E2P decomposition upon PLN phosphorylation may contribute to the increased Vmax(Ca) of Ca uptake at 25 degrees C but not at 37 degrees C, based on measurement of the kinetics of E2P decomposition and steady-state E2P formation from Pi at different temperatures. Our data document almost identical increases in Vmax(Ca) of microsomal Ca uptake with PLN phosphorylation or addition of anti-PLN mAb and hence provide insight into the kinetic mechanism of PLN's regulation of the cardiac sarcoplasmic reticulum Ca pump protein.[Abstract] [Full Text] [Related] [New Search]