These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cofilin undergoes rapid dephosphorylation in stimulated neutrophils and translocates to ruffled membranes enriched in products of the NADPH oxidase complex. Evidence for a novel cycle of phosphorylation and dephosphorylation. Author: Heyworth PG, Robinson JM, Ding J, Ellis BA, Badwey JA. Journal: Histochem Cell Biol; 1997 Sep; 108(3):221-33. PubMed ID: 9342616. Abstract: Neutrophils contain a 21-kDa phosphoprotein that undergoes rapid dephosphorylation upon stimulation of these cells with the chemoattractant N-fMet-Leu-Phe (fMLP), activators of protein kinase C [e.g., 4 beta-phorbol 12-myristate 13-acetate (PMA)] or the calcium ionophore A23187. This phosphoprotein was identified as the non-muscle form of cofilin by peptide sequencing and immunoblotting with specific antibodies. Evidence is presented that in neutrophils cofilin is regulated by a continual cycle of phosphorylation and dephosphorylation, and that the phosphatase undergoes activation during cell stimulation. Experiments with a wide variety of antagonists further suggested that the protein kinase that participates in these reactions may be a novel enzyme. The kinetics of cofilin dephosphorylation in neutrophils stimulated with fMLP or PMA were very similar to those observed for superoxide (O2-) release. Immunofluorescent studies revealed that cofilin was present throughout the cytosol of resting neutrophils and underwent rapid translocation to the F-actin-rich, ruffled membranes of stimulated cells. Cytochemical analysis further revealed that the ruffled membranes also contained large amounts of hydrogen peroxide (H2O2), a product of the O2-/H2O2-generating activity of stimulated neutrophils (NADPH oxidase). Cofilin is therefore well placed to participate in the continual polymerization and depolymerization of F-actin that is thought to give rise to the oscillatory pattern of H2O2 production observed under certain conditions.[Abstract] [Full Text] [Related] [New Search]