These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Common defects of different retinoic acid resistant promyelocytic leukemia cells are persistent telomerase activity and nuclear body disorganization.
    Author: Nason-Burchenal K, Maerz W, Albanell J, Allopenna J, Martin P, Moore MA, Dmitrovsky E.
    Journal: Differentiation; 1997 Aug; 61(5):321-31. PubMed ID: 9342843.
    Abstract:
    The acute promyelocytic leukemia (APL) t(15;17) rearrangement fuses the promyelocytic leukemia (PML) gene to the retinoic acid receptor-alpha (RAR alpha). There is expression of the chimeric transcript, PML/RAR alpha, in these APL cells. These clinical APL cases respond to the differentiation agent all-trans retinoic acid (ATRA) with complete but not durable remissions because ATRA resistance develops. The NB4 APL cell line expresses PML/RAR alpha and responds to the growth inhibitory and differentiation-inducing signals of ATRA. To identify mechanisms responsible for ATRA resistance in APL, ATRA-resistant NB4 cell lines were derived from parental NB4 cells using different strategies. These lines were resistant to the growth inhibition and differentiation effects of ATRA. ATRA-resistant cells were isolated as a de novo resistant line from parental NB4 cells (NB4-R1), following chemical mutagenization and selection in ATRA (NB4-R2), or after chronic selection in ATRA (NB4-R3). Common defects linked to this ATRA resistance were found. When cultured in ATRA, these resistant cells still express PML, RAR alpha, and PML/RAR alpha proteins. Sequence abnormalities were not detected in the RAR alpha DNA binding domains cloned from a representative RA-resistant NB4 line. In ATRA-sensitive but not ATRA-resistant NB4 cells, ATRA down-regulated retinoid X receptor-alpha (RXR alpha) expression, a known marker of ATRA response in parental NB4 cells. Notably, engineered overexpression of RXR alpha in ATRA-sensitive NB4 cells did not block ATRA-mediated growth suppression. ATRA treatment of these resistant NB4 lines did not signal a decline in telomerase activity or reorganization of PML-associated nuclear bodies, but both events occurred in ATRA-sensitive NB4 cells. These ATRA-resistant NB4 lines are not fully differentiation-defective, since monocytic maturation was induced following treatment with phorbol 12-myristate 13-acetate (PMA) and 1,25 dihydroxy vitamin D3 (vitamin D3). Notably, induced monocytic differentiation of these distinct ATRA-resistant APL lines markedly repressed telomerase activity. Thus, this study suggests that persistent telomerase activity and nuclear body disorganization are linked to ATRA resistance in APL.
    [Abstract] [Full Text] [Related] [New Search]