These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Double-label immunofluorescence with the laser scanning confocal microscope using cyanine dyes. Author: Sargent PB. Journal: Neuroimage; 1994 Nov; 1(4):288-95. PubMed ID: 9343578. Abstract: The laser scanning confocal microscope, when used with the krypton-argon ion laser, is well suited for the simultaneous detection of pairs of antigens by immunofluorescence. Traditionally, double-label studies have utilized secondary antibodies conjugated to fluorescein isothiocyanate (FITC), excited by the 488-nm line (blue), and to tetramethyl rhodamine isothiocyanate or Texas Red, excited by the 568-nm line (yellow). However, the use of fluorophores excited by the 488 nm line produces unsatisfactory results when tissue contains low wavelength-excitable autofluorescence. In the amphibian cardiac ganglion, for example, autofluorescent granules within parasympathetic neurons obscure cell surface-derived signals and prevent one from analyzing the relative position of acetylcholine receptor clusters and synaptic boutons by double-label immunofluorescence. This problem has been solved by using cyanine 3.18 (Cy3)- and cyanine 5.18 (Cy5)-conjugated secondary antibodies, which are excited efficiently by the 568-nm (yellow) and the 647-nm (red) lines and which emit in the orange/red and in the far-red, respectively, and thus by avoiding the 488-nm line altogether. The resulting images are as good or better than those obtained with FITC and Texas Red, even without consideration of autofluorescence.[Abstract] [Full Text] [Related] [New Search]