These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Prostaglandin E2 receptor subtype EP2 gene expression in the mouse uterus coincides with differentiation of the luminal epithelium for implantation.
    Author: Lim H, Dey SK.
    Journal: Endocrinology; 1997 Nov; 138(11):4599-606. PubMed ID: 9348184.
    Abstract:
    Among the PGs, PGE2 is considered especially important for implantation and decidualization. Four major PGE2 receptor subtypes, EP1, EP2, EP3, and EP4, mediate various PGE2 effects via their coupling to distinct signaling pathways. Previously, we have shown that the EP1, EP3, and EP4 genes are expressed in the periimplantation mouse uterus in a spatio-temporal manner, suggesting compartmentalized actions of PGE2 during this period. In this study, we examined the expression of the EP2 gene in the mouse uterus during the periimplantation period (days 1-8) and during experimentally induced progesterone (P4)-maintained delayed implantation and its resumption by 17beta-estradiol (E2). We also examined its regulation in the uterus by ovarian steroid hormones. Our results establish that EP2 messenger RNA (mRNA) is expressed exclusively in the luminal epithelium primarily on day 4 (the day of implantation) and day 5 (early implantation) of pregnancy. In (P4)-maintained delayed implanting mice, EP2 mRNA was present in the luminal epithelium, and the expression was further enhanced regardless of the location of the blastocysts after reinitiation of implantation. This observation suggests little or no embryonic influence in regulating EP2 expression and, instead, shows its regulation by P4 and E2. Indeed, treatment with E2 and/or P4 exhibited unique regulation of this gene. The treatment of adult ovariectomized mice with E2 down-regulated the basal levels of EP2 mRNA, whereas that with P4 up-regulated its levels in the luminal epithelium. The up-regulation of EP2 mRNA levels by P4 was further augmented by superimposition of the E2 treatment, suggesting a synergistic interaction between E2 and P4 in regulating this gene in the uterus. Collectively, the results suggest that EP2 could be a potential mediator of PGE2 actions in regulating luminal epithelial differentiation and serve as a marker for uterine receptivity for implantation.
    [Abstract] [Full Text] [Related] [New Search]