These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Active repression by thyroid hormone receptor splicing variant alpha2 requires specific regulatory elements in the context of native triiodothyronine-regulated gene promoters.
    Author: Farsetti A, Lazar J, Phyillaier M, Lippoldt R, Pontecorvi A, Nikodem VM.
    Journal: Endocrinology; 1997 Nov; 138(11):4705-12. PubMed ID: 9348197.
    Abstract:
    Structural requirements for the inhibitory action of thyroid hormone receptor splicing variant alpha2 (TR alpha2) on T3/TRbeta1-mediated transactivation were investigated in native promoters of two T3-regulated genes: the brain-specific myelin basic protein (MBP) and the housekeeping malic enzyme (ME). T3/TRbeta1 transactivation of MBP256-chloramphenicol acetyl transferase (CAT) and ME315-CAT constructs was inhibited and unaffected by TR alpha2, respectively. In electrophoretic mobility shift assays, TR alpha2 bound MBP-thyroid response element (TRE) as a monomer but failed to interact with ME-TRE. Mutations of ME-TRE allowed TR alpha2 binding but not inhibition of T3/TRbeta1-mediated transactivation. In the context of the MBP promoter, replacement of MBP-TRE with ME-TRE or exchange of MBP TATA-like box with the ME GC-rich region spanning the transcription start site abolished TR alpha2 dominant negative action. Simultaneous introduction of both MBP-TRE and MBP TATA-like box in the context of ME promoter, however, triggered TR alpha2 inhibition of T3/TRbeta1 transactivation, indicating that these regulatory elements are necessary, but not individually sufficient, to mediate TR alpha2 dominant negative activity. Functional studies at low TR alpha2/TRbeta1 ratios revealed that binding to TRE facilitates TR alpha2 dominant negative action while prevention of DNA interaction by altering TR alpha2 P-box structure preserved TR alpha2 inhibitory effect, although with lower potency. In conclusion, the results suggest that, in native promoters of T3-regulated genes, a dual molecular mechanism, with DNA-binding dependent and DNA-binding independent components, underlies TR alpha2 dominant negative activity.
    [Abstract] [Full Text] [Related] [New Search]