These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ca2+ and Na+ permeability of high-threshold Ca2+ channels and their voltage-dependent block by Mg2+ ions in chick sensory neurones.
    Author: Carbone E, Lux HD, Carabelli V, Aicardi G, Zucker H.
    Journal: J Physiol; 1997 Oct 01; 504 ( Pt 1)(Pt 1):1-15. PubMed ID: 9350613.
    Abstract:
    1. The Mg2+ block of Na+ and Ca2+ currents through high-voltage activated (HVA; L- and N-type) Ca2+ channels was studied in chick dorsal root ganglion neurones. 2. In low extracellular [Ca2+] (< 10(-8) M) and with Na+o and Cs+i as the main charge carriers (120 mM), HVA Na+ currents started to activate at -40 mV, reached inward peak values near 0 mV and reversed at about +40 mV. 3. Addition of 30-500 microM Mg2+ to the bath caused a strong depression of inward Na+ currents that was voltage and dose dependent (KD = 39 microM in 120 mM Na+ at -10 mV). The block was maximal at negative potentials (< -70 mV) and decreased with increasing positive potentials, suggesting that Mg2+ cannot escape to the cell interior. 4. Block of Ca2+ currents by Mg2+ was also voltage dependent, but by three orders of magnitude less potent than with Na+ currents (KD = 24 mM in 2 mM Ca2+ at -30 mV). The high concentration of Mg2+ caused a prominent voltage shift of channel gating kinetics induced by surface charge screening effects. To compensate for this, Mg2+ block of inward Ca2+ currents was estimated from the instantaneous I-V relationships on return from very positive potentials (+100 mV). 5. Inward Na+ and Ca2+ tail currents following depolarization to +90 mV were markedly depressed, suggesting that channels cleared of Mg2+ ions during strong depolarization are quickly re-blocked on return to negative potentials. The kinetics of re-block by Mg2+ was too fast (< 100 microseconds) to be resolved by our recording apparatus. This implies a rate of entry for Mg2+ > 1.45 x 10(8) M-1 S-1 when Na+ is the permeating ion and a rate approximately 3 orders of magnitude smaller for Ca2+. 6. Mg2+ unblock of HVA Na+ currents at +100 mV was independent of the size of outward currents, whether Na+, Cs+ or NMG+ were the main internal cations. 7. Consistent with the idea of a high-affinity binding site for Ca2+ inside the channel, micromolar amounts of Ca2+ caused a strong depression of Na+ currents between -40 and 0 mV, which was effectively relieved with more positive as well as with negative potentials (KD = 0.7 microM in 120 mM Na+ at -20 mV). In this case, the kinetics of re-block could be resolved and gave rates of entry and exit for Ca2+ of 1.4 x 10(8) M-1 S-1 and 2.95 x 10(2) s-1, respectively. 8. The strong voltage dependence and weak current dependence of HVA channel block by divalent cations and the markedly different KD values of Na+ and Ca2+ current block by Mg2+ can be well described by a previously proposed model for Ca2+ channel permeation based on interactions between the permeating ion and the negative charges forming the high-affinity binding site for Ca2+ inside the pore (Lux, Carbone & Zucker, 1990).
    [Abstract] [Full Text] [Related] [New Search]