These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Myosin light-chain phosphorylation controls insulin secretion at a proximal step in the secretory cascade. Author: Iida Y, Senda T, Matsukawa Y, Onoda K, Miyazaki JI, Sakaguchi H, Nimura Y, Hidaka H, Niki I. Journal: Am J Physiol; 1997 Oct; 273(4):E782-9. PubMed ID: 9357809. Abstract: The aim of this study was to investigate how insulin secretion is controlled by phosphorylation of the myosin light chain (MLC). Ca2+-evoked insulin release from pancreatic islets permeabilized with streptolysin O was inhibited by different monoclonal antibodies against myosin light-chain kinase (MLCK) to an extent parallel to their inhibition of purified MLCK. Anti-MLCK antibody also inhibited insulin release caused by the stable GTP analog guanosine 5'-O-(3-thiodiphosphate), even at a substimulatory concentration (0.1 microM) of Ca2+. Free Ca2+ increased MLC peptide phosphorylation by beta-cell extracts in vitro. In contrast to the phosphorylation by purified MLCK or by calmodulin (CaM) kinase II, the activity partially remained with the beta-cell under nonstimulatory Ca2+ (0.1 microM) conditions. The MLCK inhibitor ML-9 inhibited the activity in the beta-cell with both substimulatory and stimulatory Ca2+, whereas KN-62, an inhibitor of CaM kinase II, only exerted an influence in the latter case. ML-9 decreased intracellular granule movement in MIN6 cells under basal and acetylcholine-stimulated conditions. We propose that MLC phosphorylation may modulate translocation of secretory granules, resulting in enhanced insulin secretion.[Abstract] [Full Text] [Related] [New Search]