These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mu and delta opioids but not kappa opioid inhibit voltage-activated Ba2+ currents in neuronal F-11 cell.
    Author: Nah SY, Unteutsch A, Bunzow JR, Cook SP, Beacham DW, Grandy DK.
    Journal: Brain Res; 1997 Aug 22; 766(1-2):66-71. PubMed ID: 9359588.
    Abstract:
    Whole-cell patch-clamp recordings were used to study Ba2+ currents through voltage-dependent Ca2+ channels in dorsal root ganglion x mouse neuroblastoma hybrid (F-11) cells. Opioid agonists selective for either mu (Tyr-D-Ala-Gly-Mephe-Gly-ol; DAMGO) or delta (Tyr-D-Pen-Gly-Phe-D-Pen-OH; DPDPE) receptors inhibited high-threshold Ba2+ currents. The inhibition was reversible, naloxone-sensitive, and dose-dependent. The inhibitory effects of both DAMGO and DPDPE were blocked by pretreatment of the cells with pertussis toxin (PTX) as well as by brief exposure to the sulfhydryl alkylating agent, N-ethylmaleimide (NEM). The N-type Ca2+ channel antagonist omega-conotoxin GVIA (omega-CTX GVIA) irreversibly inhibited high threshold Ba2+ currents by 66% and blocked the inhibitory effect of DAMGO or DPDPE. In contrast, the L-type Ca2+ channel blocker nifedipine inhibited high threshold Ba2+ currents by 15% and failed to block the inhibitory effect of DAMGO or DPDPE. These results demonstrate that mu and delta opioid receptors are negatively coupled to N-type Ca2+ channels via PTX- and NEM-sensitive GTP-binding proteins in F-11 cells.
    [Abstract] [Full Text] [Related] [New Search]