These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of essential histidine residues in UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase-T1. Author: Wragg S, Hagen FK, Tabak LA. Journal: Biochem J; 1997 Nov 15; 328 ( Pt 1)(Pt 1):193-7. PubMed ID: 9359852. Abstract: UDP-N-acetyl-d-galactosamine:polypeptide N-acetylgalactosaminyltransferases (ppGaNTases) catalyse the initial step of mucin-type O-glycosylation. The activity of bovine ppGaNTase-T1 isoenzyme was inhibited by diethyl pyrocarbonate (DEPC) modification. Activity was partially restored by hydroxylamine treatment, indicating that one of the reactive residues was a histidine. The transferase was protected against DEPC inactivation when UDP-GalNAc and EPO-G, a peptide pseudo-substrate PPDAAGAAPLR, were simultaneously present, while presence of EPO-G alone did not alter DEPC inactivation. However, inclusion of UDP-GalNAc alone potentiated DEPC-inhibition of the enzyme, suggesting that UDP-GalNAc binding changes the accessibility or reactivity of an essential histidine residue. Deletion of the first 56 amino acids (including one hisitidine residue) yielded a fully active secreted form of the bovine ppGaNTase-T1 enzyme. Each of the 14 remaining histidines in the enzyme were mutated to alanine, and the recombinant mutants were recovered from COS7 cells. The mutation of histidine residues His211-->Ala and His344-->Ala resulted in recombinant proteins with no detectable enzymic activity. A significant decrease in the initial rate of GalNAc transfer to the substrate was observed with mutants His125-->Ala and His341-->Ala (1% and 6% of wild-type activity respectively). Mutation of the remaining ten histidine residues yielded mutants that were indistinguishable from the wild-type enzyme. Mutagenesis and SDS/PAGE analysis of all N-glycosylation sequons revealed that positions N-95 and N-552 are occupied by N-linked sugars in COS7 cells. Ablation of either site did not perturb enzyme biosynthesis or enzyme activity.[Abstract] [Full Text] [Related] [New Search]