These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Agents that affect cAMP levels or protein kinase A activity modulate memory consolidation when injected into rat hippocampus but not amygdala. Author: Bevilaqua L, Ardenghi P, Schröder N, Bromberg E, Quevedo J, Schmitz PK, Bianchin M, Walz R, Schaeffer E, Medina JH, Izquierdo I. Journal: Braz J Med Biol Res; 1997 Aug; 30(8):967-70. PubMed ID: 9361726. Abstract: Male Wistar rats were trained in one-trial step-down inhibitory avoidance using a 0.4-mA footshock. At various times after training (0, 1.5, 3, 6 and 9 h for the animals implanted into the CA1 region of the hippocampus; 0 and 3 h for those implanted into the amygdala), these animals received microinfusions of SKF38393 (7.5 micrograms/side), SCH23390 (0.5 microgram/side), norepinephrine (0.3 microgram/side), timolol (0.3 microgram/side), 8-OH-DPAT (2.5 micrograms/side), NAN-190 (2.5 micrograms/side), forskolin (0.5 microgram/side), KT5720 (0.5 microgram/side) or 8-Br-cAMP (1.25 micrograms/side). Rats were tested for retention 24 h after training. When given into the hippocampus 0 h post-training, norepinephrine enhanced memory whereas KT5720 was amnestic. When given 1.5 h after training, all treatments were ineffective. When given 3 or 6 h post-training, 8-Br-cAMP, forskolin, SKF38393, norepinephrine and NAN-190 caused memory facilitation, while KT5720, SCH23390, timolol and 8-OH-DPAT caused retrograde amnesia. Again, at 9 h after training, all treatments were ineffective. When given into the amygdala, norepinephrine caused retrograde facilitation at 0 h after training. The other drugs infused into the amygdala did not cause any significant effect. These data suggest that in the hippocampus, but not in the amygdala, a cAMP/protein kinase A pathway is involved in memory consolidation at 3 and 6 h after training, which is regulated by D1, beta, and 5HT1A receptors. This correlates with data on increased post-training cAMP levels and a dual peak of protein kinase A activity and CREB-P levels (at 0 and 3-6 h) in rat hippocampus after training in this task. These results suggest that the hippocampus, but not the amygdala, is involved in long-term storage of step-down inhibitory avoidance in the rat.[Abstract] [Full Text] [Related] [New Search]