These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Purification and properties of a membrane aminopeptidase from Ascaris suum muscle that degrades neuropeptides AF1 and AF2. Author: Sajid M, Isaac RE, Harrow ID. Journal: Mol Biochem Parasitol; 1997 Nov; 89(2):225-34. PubMed ID: 9364967. Abstract: We have identified on the membranes of the locomotory muscle of Ascaris suum an amastatin-sensitive aminopeptidase that hydrolyses the bioactive neuropeptides AF1 (KNEFIRF-NH2) and AF2 (KHEYLRF-NH2), by cleavage of the Lys1-Asn2 and Lys1-His2 peptide bonds, respectively. AF2 (1.2 nmol of HEYLRF-NH2 formed min[-1] (mg protein[-1])) was hydrolysed at a faster rate compared to AF1 (0.2 nmol of NEFIRF-NH2 formed min[-1] (mg protein[-1])). AF1 hydrolysis by the aminopeptidase was inhibited by the amastatin (IC50, 9.0 microM), leuhistin (IC50, 1.25 microM) but was insensitive to puromycin, indicating a similarity to mammalian aminopeptidase N. The enzyme was also inhibited by arphamenine B (IC50, 9.0 microM), (2S, 3R)-3-amino-2-hydroxy-4-(4-nitrophenyl)butanoyl-L-leucine (IC50, 8.0 microM), bestatin (IC50, 15.0 microM) and 1 mM 1-10 bis-phenanthroline. The detergent Triton X-100 solubilised enzyme had a pI of 5.0 and after 1000-fold purification by ion-exchange chromatography, appeared to have a Mr of around 240,000 by SDS-PAGE. The purified aminopeptidase had a Km of 534 microM for the hydrolysis of AF1 and cleaved Phe1 from FMRF-NH2, but was unable to hydrolyse DFMRF-NH2 or FDMRF-NH2. The aminopeptidase that we have described in this report might have a role in the extracellular metabolism and inactivation of neuropeptides acting on the locomotory muscle of A. suum.[Abstract] [Full Text] [Related] [New Search]