These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evaluation of opioid receptor subtype antagonist effects in the ventral tegmental area upon food intake under deprivation, glucoprivic and palatable conditions.
    Author: Ragnauth A, Ruegg H, Bodnar RJ.
    Journal: Brain Res; 1997 Aug 29; 767(1):8-16. PubMed ID: 9365010.
    Abstract:
    Opioid receptor subtype antagonists differentially alter food intake under deprivation (24 h), glucoprivic (2-deoxy-D-glucose, 500 mg/kg, i.p.) or palatable (10% sucrose) conditions with mu (beta-funaltrexamine) and kappa (nor-binaltorphamine), but not delta1 ([D-Ala2,Leu5,Cys6]enkephalin) opioid antagonists reducing each form of intake following ventricular microinjection. Both mu and kappa opioid antagonists microinjected into either the hypothalamic paraventricular nucleus or the nucleus accumbens reduce intake under deprivation and glucoprivic conditions. Palatable intake is reduced by both antagonists in the paraventricular nucleus, but only mu antagonists are active in the accumbens. Food intake is stimulated by mu and delta, but not kappa, opioid agonists microinjected into the ventral tegmental area. The present study examined whether food intake under either deprivation, glucoprivic or palatable conditions was altered by bilateral administration of general (naltrexone), mu, kappa, delta1 or delta2 (naltrindole isothiocyanate) opioid antagonists into the ventral tegmental area. Deprivation (24 h)-induced feeding was significantly reduced by high (50 microg), but not lower (10-20 microg) doses of naltrexone (21%), and by delta2 (4 microg, 19%) antagonism in the ventral tegmental area. 2-Deoxy-D-glucose (500 mg/kg, i.p.)-induced hyperphagia was significantly reduced by high (50 microg), but not lower (20 microg) doses of naltrexone (64%), and by delta2 (4 microg, 27%) antagonism in the ventral tegmental area. Sucrose (10%) intake was significantly reduced by naltrexone (20-50 microg, 25-39%) and delta2 (4 microg, 25%) antagonism in the ventral tegmental area. Neither mu, kappa nor delta1 antagonists were effective in reducing any form of intake following microinjection into the ventral tegmental area. These data indicate that the ventral tegmental area plays a relatively minor role in the elicitation of these forms of food intake, and that delta2, rather than mu, kappa or delta1 opioid receptors appear responsible for mediation of these forms of intake by this nucleus.
    [Abstract] [Full Text] [Related] [New Search]