These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sex differences and androgen-dependent regulation of aromatase (CYP19) mRNA expression in the developing and adult rat brain. Author: Lauber ME, Sarasin A, Lichtensteiger W. Journal: J Steroid Biochem Mol Biol; 1997 Apr; 61(3-6):359-64. PubMed ID: 9365211. Abstract: Sex differences, androgen dependence and asymmetries of aromatase activity have been reported during ontogeny of the rat. It remains to be elucidated, however, whether the changes in aromatase activity are reflected by similar changes in specific mRNA levels. In addition, very little is known regarding mechanism(s) underlying such differential regulation of aromatase expression. To address these questions, we have employed the in situ hybridization (ISH) technique to examine specific mRNA levels in the brain of both male and female rats at selected stages of development. In prenatal stages of development, at gestational day (GD) 18 and 20, aromatase mRNA was detected in several hypothalamic and limbic brain regions. Semiquantitative analysis of aromatase mRNA did not reveal statistically significant sex differences in any of these regions (except in one experiment at GD20, when a sex difference was found in the medial preoptic nucleus). In contrast, clear sex differences were determined at postnatal day (PN) 2; male animals contained significantly more aromatase mRNA in the bed nucleus of the stria terminalis (BST) and the sexually dimorphic nucleus of the preoptic area (SDN) compared to female rats. Four days later in development, at PN6, sex differences of aromatase mRNA signals were observed in the BST, but were no longer detectable in the SDN. At PN15 and in adult animals, no sex differences could be determined. The effect of flutamide treatment (50 mg/kg/day) was investigated in GD20 fetuses as well as in adult rats. No statistically significant changes in aromatase mRNA expression were found in either case. In summary, our results suggest that differential regulation of aromatase mRNA expression during the critical period of sexual differentiation might, in part, account for the establishment of some of the many sexually dimorphic parameters of the rat brain. The role of androgens in the regulation of the sex-specific and developmental expression of aromatase mRNA in the rat brain remains to be clarified.[Abstract] [Full Text] [Related] [New Search]