These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Purification, properties, and N-terminal amino acid sequence of a kallikrein-like enzyme from the venom of Lachesis muta rhombeata (Bushmaster). Author: Giovanni-De-Simone S, Aguiar AS, Gimenez AR, Novellino K, de Moura RS. Journal: J Protein Chem; 1997 Nov; 16(8):809-18. PubMed ID: 9365929. Abstract: Pit viper venoms contain multiple proteinases which cause considerable damage in tissues and systemic effects after envenomation. A proteinase, kallikrein-like enzyme, belonging to the serine group must play a very important role on systemic effects. The corresponding enzyme from Lachesis muta rhombeata venom was purified to homogeneity by a combination of isoelectrofocusing fractionation followed by one step of gel filtration HPLC. The enzyme focused with pI 5.0-6.5, it had a molecular mass of 32 kDa by gel filtration HPLC, had edematogenic activity, and induced a hypotensic effect in anesthetized rats. It exhibited strong N-alpha-tosyl-L-Arg methyl esterase (955.38 units/mg) and N-Bz-DL-Arg-pNA amidolytic (233.02 units/mg) activities, hydrolyzed tripeptide nitroanilide derivatives weakly or not at all, and cleaved selectively the A-alpha and B-beta chains of fibrinogen, apparently leaving the Y-chain unaffected. The 30 N-terminal amino acid sequence of the L. m. rhombeata protein showed greatest identity (74% in 26 amino acids) with Crotalus viridis kallikrein-like protein, but significant similarities in sequence were observed with enzymes from other snake venoms and pig pancreatic kallikrein.[Abstract] [Full Text] [Related] [New Search]