These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Purification and characterization of a novel Kazal-type serine proteinase inhibitor of neutrophil elastase from sheep lung.
    Author: Mistry R, Snashall PD, Totty N, Briskin S, Guz A, Tetley TD.
    Journal: Biochim Biophys Acta; 1997 Sep 26; 1342(1):51-61. PubMed ID: 9366270.
    Abstract:
    A Kazal-type elastase inhibitor was purified by trichloroacetic acid precipitation of sheep lung lavage fluid followed by chymotrypsin affinity and gel-filtration chromatography of the supernatant. Sheep lung elastase inhibitor (SLEI) is glycosylated. Laser desorption mass spectrometry indicated that SLEI has a molecular mass of 16.8-17.3 kDa. Partial protein sequence of SLEI and of a peptide derived from SLEI showed 31-52% and 51-66% homology at the N-terminus and at the inhibitory site respectively with Kazal-type double-headed proteinase inhibitors (bikazins). SLEI inhibited human leukocyte elastase and porcine pancreatic elastase but not human cathepsin G. It was inactivated by chloramine-T and reactivated when incubated with methionine sulfoxide peptide reductase and dithiothreitol, indicating the presence of a methionine at the active site. The concentration of SLEI in bronchoalveolar lavage fluid (BALF) and lung lymph was 0.28 microM (0.23-0.49); 0.24 microM (0.20-0.31) (median, (range), n = 5), respectively and was undetectable in plasma (< 0.03 microM) suggesting that SLEI is produced in the lung. The median molar ratios of SLEI to alpha1-proteinase inhibitor in BALF and lung lymph were 3.2 to 1 and 0.017 to 1, respectively. These results indicate that SLEI probably makes an important contribution to antielastase defence in epithelial lining liquid.
    [Abstract] [Full Text] [Related] [New Search]