These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Incomplete infarct and delayed neuronal death after transient middle cerebral artery occlusion in rats. Author: Garcia JH, Liu KF, Ye ZR, Gutierrez JA. Journal: Stroke; 1997 Nov; 28(11):2303-9; discussion 2310. PubMed ID: 9368580. Abstract: BACKGROUND AND PURPOSE: The clinical syndrome of transient ischemic attacks is accompanied in a significant percentage of patients by brain lesions or neuroimaging abnormalities whose structural counterparts have not been defined. The objective of this study was to analyze, in an experimental model of short-term (< 25 minutes) focal ischemia and long-term (< or = 28 days) reperfusion, the extent and nature of the structural abnormalities affecting neurons and glia located within the territory of the transiently occluded artery. METHODS: Adult Wistar rats (n = 121) had the origin of one middle cerebral artery (MCA) occluded with a nylon monofilament for periods of 10 to 25 minutes. Experiments of transient MCA occlusion were terminated at variable periods ranging from 1 day to 4 weeks. Control experiments consisted of (1) MCA occlusion without reperfusion (n = 7) lasting 7 to 14 days and (2) sham operations (n = 2) followed by 1- to 4-day survival. After in situ fixation, brain specimens were serially sectioned and subjected to detailed morphometric evaluations utilizing light and electron microscopes. The statistical method used to evaluate the results was based on ANOVA followed by Bonferroni's corrected t test and Student's t test comparisons. RESULTS: Brain lesions were not detectable in the sham-operated controls. All brains with permanent MCA occlusion (7 to 14 days) had large infarctions with abundant macrophage infiltration and early cavitation. Forty-five (37%) of the experiments involving transient MCA occlusion had no detectable brain lesions after 4 weeks. Selective neuronal necrosis was found in 76 of 121 rats (63%) with transient MCA occlusion. Neuronal necrosis always involved the striatum, and in 29% of the brains with ischemic injury, necrosis also included a short segment of the cortex. In the striatum, the length of the arterial occlusion was the main determinant of the number of necrotic neurons (20 minutes [22.6 +/- 19] is worse than 10 minutes [4.9 +/- 7]) (P < .0001). In the cortex, the length of reperfusion determined the number of necrotic neurons appearing in layer 3. Experiments with reperfusion of 4 to 7 days' duration yielded more necrotic neurons per microscopic field (2.02 +/- 3) than those lasting fewer days (0.04 +/- 0.1) (P < .05). The histological features of these lesions underwent continuous change until the end of the fourth week, at which time necrotic neurons were still visible both in the striatum and in the cortex. CONCLUSIONS: Arterial occlusions of short duration (< 25 minutes) produced, in 76 of 121 experiments (63%), brain lesions characterized by selective neuronal necrosis and various glial responses (or incomplete infarction). This lesion is entirely different from the pannecrosis/cavitation typical of an infarction that appears 3 to 4 days after a prolonged arterial occlusion. Delayed neuronal necrosis, secondary to a transient arterial occlusion or increasing numbers of necrotic neurons in experiments with variable periods of reperfusion, was a response observed only at a predictable segment of the frontoparietal cortex.[Abstract] [Full Text] [Related] [New Search]