These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Spatial orientation and the representation of space with parietal lobe lesions.
    Author: Karnath HO.
    Journal: Philos Trans R Soc Lond B Biol Sci; 1997 Oct 29; 352(1360):1411-9. PubMed ID: 9368929.
    Abstract:
    Damage to the human parietal cortex leads to disturbances of spatial perception and of motor behaviour. Within the parietal lobe, lesions of the superior and of the inferior lobule induce quite different, characteristic deficits. Patients with inferior (predominantly right) parietal lobe lesions fail to explore the contralesional part of space by eye or limb movements (spatial neglect). In contrast, superior parietal lobe lesions lead to specific impairments of goal-directed movements (optic ataxia). The observations reported in this paper support the view of dissociated functions represented in the inferior and the superior lobule of the human parietal cortex. They suggest that a spatial reference frame for exploratory behaviour is disturbed in patients with neglect. Data from these patients' visual search argue that their failure to explore the contralesional side is due to a disturbed input transformation leading to a deviation of egocentric space representation to the ipsilesional side. Data further show that this deviation follows a rotation around the earth-vertical body axis to the ipsilesional side rather than a translation towards that side. The results are in clear contrast to explanations that assume a lateral gradient ranging from a minimum of exploration in the extreme contralesional to a maximum in the extreme ipsilesional hemispace. Moreover, the failure to orient towards and to explore the contralesional part of space appears to be distinct from those deficits observed once an object of interest has been located and releases reaching. Although patients with neglect exhibit a severe bias of exploratory movements, their hand trajectories to targets in peripersonal space may follow a straight path. This result suggests that (i) exploratory and (ii) goal-directed behaviour in space do not share the same neural control mechanisms. Neural representation of space in the inferior parietal lobule seems to serve as a matrix for spatial exploration and for orienting in space but not for visuomotor processes involved in reaching for objects. Disturbances of such processes rather appear to be prominent in patients with more superior parietal lobe lesions and optic ataxia.
    [Abstract] [Full Text] [Related] [New Search]