These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional organization of forebrain pathways for song production and perception.
    Author: Margoliash D.
    Journal: J Neurobiol; 1997 Nov; 33(5):671-93. PubMed ID: 9369466.
    Abstract:
    This article reviews the organization of the forebrain nuclei of the avian song system. Particular emphasis is placed on recent physiologic recordings from awake behaving adult birds while they sing, call, and listen to broadcasts of acoustic stimuli. The neurons in the descending motor pathway (HVc and RA) are organized in a hierarchical arrangement of temporal units of song production, with HVc neurons representing syllables and RA neurons representing notes. The nuclei Uva and NIf, which are afferent to HVc, may help organize syllables into larger units of vocalization. HVc and RA are also active during production of all calls. The patterns of activity associated with calls differ between learned calls and those that are innately specified, and give insight into the interactions between the forebrain and midbrain during calling, as well as into the evolutionary origins of the song system. Neurons in Area X, the first part of the anterior forebrain pathway leading from HVc to RA, are also active during singing. Many HVc neurons are also auditory, exhibiting selectivity for learned acoustic parameters of the individual bird's own song (BOS). Similar auditory responses are also observed in RA and Area X in anesthetized birds. In contrast to HVc, however, auditory responses in RA are very weak or absent in awake birds under our experimental paradigm, but are uncovered when birds are anesthetized. Thus, the roles of both pathways beyond HVc in adult birds is under review. In particular, theories hypothesizing a role for the descending motor pathway (RA and below) in adult song perception do not appear to obtain. The data also suggest that the anterior forebrain pathway has a greater motor role than previously considered. We suggest that a major role of the anterior forebrain pathway is to resolve the timing mismatch between motor program readout and sensory feedback, thereby facilitating motor programming during birdsong learning. Pathways afferent to HVc may participate more in sensory acquisition and sensorimotor learning during song development than is commonly assumed.
    [Abstract] [Full Text] [Related] [New Search]