These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cyanide and nitric oxide binding to reduced protocatechuate 3,4-dioxygenase: insight into the basis for order-dependent ligand binding by intradiol catecholic dioxygenases.
    Author: Orville AM, Lipscomb JD.
    Journal: Biochemistry; 1997 Nov 18; 36(46):14044-55. PubMed ID: 9369476.
    Abstract:
    EPR-silent, chemically reduced protocatechuate 3,4-dioxygenase (Er) binds NO at the active site Fe2+ to yield an EPR-active, S = 3/2 species that blocks subsequent binding of all other exogenous ligands. In contrast, addition of NO to a preformed Er.CN- complex yields an EPR-active, S = 1/2 species [Er.(CN)x.NO] that exhibits resolved superhyperfine splitting from 13CN-, 15/14NO, and a protein-derived 14N. Simulations of the EPR spectra observed for the Er.(CN)x.NO complex formed with 12CN- and 13CN- (1:1) show that CN- binds in two iron ligand sites (x >/= 2). The two cyanides exhibit similar, but distinguishable, hyperfine coupling constants. This demonstrates unambiguously that at least three exogenous ligands (two cyanides and NO) can bind to the Fe2+ simultaneously and strongly suggests that at least one histidine ligand is retained in the complex. The Er.(CN)>/=2.NO complex readily exchanges both of the bound cyanides for the substrate analog, 2-hydroxyisonicotinic acid N-oxide (INO), to form a Er.INO.NO complex exhibiting the same S = 3/2 type EPR spectrum that is observed for this complex in the absence of CN-. Because the dead-end Er.NO complex does not accumulate during the exchange, the results suggest that Er.(CN)>/=2. NO and Er.INO.NO are in conformational states that allow facile exchange of INO and CN- but not NO. The results are interpreted in the context of the known X-ray crystal structures for the ferric form of the resting enzyme (Eox) and numerous Eox.substrate, inhibitor, and CN- complexes, all of which have a charge neutral iron center. It is proposed that the binding of one CN- causes dissociation of an anionic endogenous ligand which begins a series of conformational changes analogous to those initiated by anionic substrate binding to Eox. This results in a new unique coordination site for NO, and a new second site for CN-; both cyanide sites are utilized when the enzyme subsequently binds substrates or INO.
    [Abstract] [Full Text] [Related] [New Search]