These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ligand-induced movement of helix X in the lactose permease from Escherichia coli: a fluorescence quenching study.
    Author: Wang Q, Matsushita K, de Foresta B, le Maire M, Kaback HR.
    Journal: Biochemistry; 1997 Nov 18; 36(46):14120-7. PubMed ID: 9369484.
    Abstract:
    Five single-Trp mutants were constructed by replacing Val315, Leu318, Val326, Leu329, or Val331 with Trp in transmembrane helix X of a functional lactose permease mutant devoid of Trp residues (Trp-less permease). Taking into account expression levels, each single-Trp permease except for Val331-->Trp exhibits significant activity. The intrinsic fluorescence emission of each single-Trp mutant does not change significantly after addition of beta-d-galactopyranosyl 1-thio-beta-d-galactopyranoside (TDG), indicating that ligand induces little change in the microenvironment of the Trp residues. However, fluorescence quenching studies with the brominated detergent 7,8-dibromododecyl beta,d-maltoside (BrDM) demonstrate that a Trp residue in place of Val315, Val326, or Val331 becomes less accessible to BrDM in the presence of TDG, while a Trp residue in place of Leu318 or Leu329 becomes more accessible. Acrylamide quenching studies with Leu318-->Trp and Val331-->Trp permeases or 2-(4-maleimidoanilino)naphthalene-6-sulfonic acid (MIANS)-labeled Thr320-->Cys and Glu325-->Cys permeases indicate that positions 318 and 325 also become more accessible to a hydrophobic environment in the presence of TDG, while positions 320 and 331 become less accessible. The findings are consistent with a recently proposed mechanism for energy coupling in lactose permease [Kaback, H. R. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 5539-5543] in which substrate binding causes a conformational change resulting in movement of Glu325 to a nonpolar environment with a dramatic increase in pKa.
    [Abstract] [Full Text] [Related] [New Search]