These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Voltage-dependent behavior of a "ball-and-chain" gramicidin channel. Author: Woolley GA, Zunic V, Karanicolas J, Jaikaran AS, Starostin AV. Journal: Biophys J; 1997 Nov; 73(5):2465-75. PubMed ID: 9370440. Abstract: The channel-forming properties of two analogs of gramicidin, gramicidin-ethylenediamine (gram-EDA), and gramicidin-N,N-dimethylethylenediamine (gram-DMEDA) were studied in planar lipid bilayers, using protons as the permeant ion. These peptides have positively charged amino groups tethered to their C-terminal ends via a linker containing a carbamate group. Gram-DMEDA has two extra methyl groups attached to the terminal amino group, making it a bulkier derivative. The carbamate groups undergo thermal cis-trans isomerization on the 10-100-ms time scale. The conductance behavior of gram-EDA is found to be markedly voltage dependent, whereas the behavior of gram-DMEDA is not. In addition, voltage affects the cis-trans ratios of the carbamate groups of gram-EDA, but not those of gram-DMEDA. A model is proposed to account for these observations, in which voltage can promote the binding of the terminal amino group of gram-EDA to the pore in a "ball-and-chain" fashion. The bulkiness of the gram-DMEDA derivative prevents this binding.[Abstract] [Full Text] [Related] [New Search]