These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Infant color vision: temporal contrast sensitivity functions for chromatic (red/green) stimuli in 3-month-olds. Author: Dobkins KR, Lia B, Teller DY. Journal: Vision Res; 1997 Oct; 37(19):2699-716. PubMed ID: 9373669. Abstract: In order to investigate the development of temporal contrast sensitivity functions (tCSFs) for chromatic (red/green) stimuli, we obtained chromatic contrast thresholds from 3-month-old infants and adults using behavioral techniques. Stimuli were moving or counterphase-reversing sinusoidal gratings of 0.25 c/deg. Five temporal frequencies were used: 0.7, 2.1, 5.6, 11 and 17 Hz (corresponding speeds = 2.8, 8.4, 22, 44 and 67 deg/sec). In order to compare chromatic results with those obtained under luminance-defined conditions, luminance tCSFs were also obtained from adults, and previously obtained infant luminance tCSFs were used (from Dobkins & Teller, 1996a). In accordance with previous studies, adults exhibited bandpass luminance tCSFs with peaks near 5 Hz and lowpass chromatic tCSFs that declined rapidly at temporal frequencies greater than 2 Hz, and the two curves crossed one another near 4 Hz. By contrast, infants exhibited bandpass rather than lowpass chromatic tCSFs with peaks near 5 Hz. These chromatic curves were quite similar in peak frequency and general shape to previously obtained infant tCSFs for luminance stimuli. Moreover, both chromatic and luminance tCSFs in infants were found to be quite similar in peak and shape to luminance tCSFs observed in adults. These findings point to the possibility that, for 3-month-old infants, both chromatic and luminance stimuli are detected by the same underlying mechanism under these conditions. We propose that such a mechanism is probably a physiological pathway dominated by magnocellular input. Earlier studies of infant color vision are discussed in this context.[Abstract] [Full Text] [Related] [New Search]