These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of multiple enhancer regions upstream of the apolipoprotein(a) gene. Author: Wade DP, Puckey LH, Knight BL, Acquati F, Mihalich A, Taramelli R. Journal: J Biol Chem; 1997 Nov 28; 272(48):30387-99. PubMed ID: 9374529. Abstract: Plasma concentrations of the atherogenic lipoprotein(a) (Lp(a)) are predominantly determined by inherited sequences within or closely linked to the apolipoprotein(a) gene locus. Much of the interindividual variability in Lp(a) levels is likely to originate at the level of apo(a) gene transcription. However, the liver-specific apo(a) basal promoter is extremely weak and does not exhibit common functional variations that affect plasma Lp(a) concentrations. In a search for additional apo(a) gene control elements, we have identified two fragments with enhancer activity within the 40-kilobase pair apo(a)-plasminogen intergenic region that coincide with DNase I-hypersensitive sites (DHII and DHIII) observed in liver chromatin of mice expressing a human apo(a) transgene. Neither enhancer exhibits tissue specificity. DHIII activity was mapped to a 600-base pair fragment containing nine DNase I-protected elements (footprints) that stimulates luciferase expression from the apo(a) promoter 10-15-fold in HepG2 cells. Binding of the ubiquitous transcription factor Sp1 plays a major role in the function of this enhancer, but no single site was indispensable for activity. DHIII comprises part of the regulatory region of an inactive long interspersed nucleotide element 1 retrotransposon, raising the possibility that retrotransposon insertion can influence the regulation of adjacent genes. DHII enhancer activity was localized to a 180-base pair fragment that stimulates transcription from the apo(a) promoter 4-8-fold in HepG2 cells. Mutations within an Sp1 site or either of two elements composed of direct repeats of the nuclear hormone receptor half-site AGGTCA in this sequence completely abolished enhancer function. Both nuclear hormone receptor elements were shown to bind peroxisome proliferator-activated receptors and other members of the nuclear receptor family, suggesting that this enhancer may mediate drug and hormone responsiveness.[Abstract] [Full Text] [Related] [New Search]