These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of high glucose on vascular endothelial growth factor expression in vascular smooth muscle cells.
    Author: Natarajan R, Bai W, Lanting L, Gonzales N, Nadler J.
    Journal: Am J Physiol; 1997 Nov; 273(5):H2224-31. PubMed ID: 9374757.
    Abstract:
    Vascular endothelial growth factor (VEGF), in addition oto its growth-promoting effects on endothelial cells, can also increase vascular permeability and monocyte migration. It has therefore been implicated in the pathogenic neovascularization associated with diabetic retinopathy and atherosclerosis. However, the factors regulating VEGF expression in the vascular wall are not fully understood. In this study, we examined the regulation of VEGF expression in vascular smooth muscle cells (VSMC) by hyperglycemia as well as by angiotensin II (ANG II). We also examined whether the 12-lipoxygenase (12-LO) product 12-hydroxyeicosatetraenoic acid (12-HETE) can alter VEGF expression, since 12-LO products of arachidonic acid have angiogenic properties, and ANG II as well as high glucose (HG, 25 mM) can increase 12-LO activity and expression in VSMC. Studies were carried out in human (HSMC) or porcine VSMC (PSMC), which were cultured for at least two passages under normal glucose (NG, 5.5 mM) or HG conditions. HG culture alone increased the expression of VEGF mRNA and protein in both HSMC and PSMC. Furthermore, ANG II treatment significantly induced VEGF mRNA and protein expression only in VSMC cultured in HG and not NG. In addition, 12-HETE significantly increased VEGF mRNA and protein expression in HSMC cultured in NG as well as in HG. Cells cultured in HG also secreted significantly greater amounts of VEGF into the culture medium. These results suggest that elevated VEGF production under HG conditions may play a role in the accelerated vascular disease observed in diabetes.
    [Abstract] [Full Text] [Related] [New Search]