These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Control of excretion of potassium: lessons from studies during prolonged total fasting in human subjects.
    Author: Lin SH, Cheema-Dhadli S, Gowrishankar M, Marliss EB, Kamel KS, Halperin ML.
    Journal: Am J Physiol; 1997 Nov; 273(5):F796-800. PubMed ID: 9374844.
    Abstract:
    A deficit of K+ of close to 300 mmol develops in the first 2 wk of fasting, but little further excretion of K+ occurs, despite high levels of aldosterone and the delivery of ketoacid anions that are not reabsorbed in the distal nephron. Our purpose was to evaluate how aldosterone could have primarily NaCl-retaining, rather than kaliuretic, properties in this setting. To evaluate the role of distal delivery of Na+, four fasted subjects received an acute infusion of NaCl to induce a natriuresis. To assess the role of distal delivery of HCO3-, five fasted subjects were given an infusion containing NaHCO3. The natriuresis induced by an infusion of NaCl caused only a small rise in the rate of excretion of K+ (0.8 +/- 0.1 to 1.9 +/- 0.3 mmol/h); in contrast, when HCO3- replaced Cl- in the infusate, K+ excretion rose to 8.3 +/- 2.2 mmol/h, despite little excretion of HCO3- (urine, pH 5.8) and similar rates of excretion of Na+. The transtubular K+ concentration gradient was 19 +/- 3 with HCO3- and 6 +/- 2 with NaCl. We conclude that the infusion of NaHCO3 led to an increase in K+ excretion, likely reflecting an increased rate of distal K+ secretion. With a low distal delivery of HCO3-, aldosterone acts as a NaCl-retaining, rather than a kaliuretic, hormone.
    [Abstract] [Full Text] [Related] [New Search]