These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Monitoring changes in lung air and liquid volumes with electrical impedance tomography.
    Author: Adler A, Amyot R, Guardo R, Bates JH, Berthiaume Y.
    Journal: J Appl Physiol (1985); 1997 Nov; 83(5):1762-7. PubMed ID: 9375349.
    Abstract:
    Electrical impedance tomography (EIT) uses electrical measurements at electrodes placed around the thorax to image changes in the conductivity distribution within the thorax. This technique is well suited to studying pulmonary function because the movement of air, blood, and extravascular fluid induces significant conductivity changes within the thorax. We conducted three experimental protocols in a total of 19 dogs to assess the accuracy with which EIT can quantify changes in the volumes of both gas and fluid in the lungs. In the first protocol, lung volume increments from 50 to 1,000 ml were applied with a large syringe. EIT measured these volume changes with an average error of 27 +/- 6 ml. In the second protocol, EIT measurements were made at end expiration and end inspiration during regular ventilation with tidal volume ranging from 100 to 1,000 ml. The average error in the EIT estimates of tidal volume was 90 +/- 43 ml. In the third protocol, lung liquid volume was measured by instilling 5% albumin solution into a lung lobe in increments ranging from 10 to 100 ml. EIT measured these volume changes with an average error of 10 +/- 10 ml and was also able to detect into which lobe the fluid had been instilled. These results indicate that EIT can noninvasively measure changes in the volumes of both gas and fluid in the lungs with clinically useful accuracy.
    [Abstract] [Full Text] [Related] [New Search]