These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reduced sarcolemmal dystrophin distribution and upregulation of utrophin in the cardiac and skeletal muscles of CHF-146 dystrophic hamsters.
    Author: Bhattacharya SK, Johnson PL, Li HJ, Handa RK, Adamec TA.
    Journal: Mol Chem Neuropathol; 1997 Jun; 31(2):187-206. PubMed ID: 9376024.
    Abstract:
    Abnormalities in the dystrophic gene product, dystrophin, have been implicated in initiating the primary membrane defect and excessive intracellular calcium accumulation (EICA), which play fundamental pathogenic roles in hereditary muscular dystrophy (HMD). Two other cytoskeletal proteins, spectrin and utrophin, bear remarkable structural and functional homologies to dystrophin. CHF-146 strain dystrophic hamsters (DH), like patients with Duchenne muscular dystrophy (DMD), die prematurely from cardiopulmonary insufficiency, focal myonecrosis, and progressive degeneration of the cardiac and skeletal muscles with EICA. Although DH present a suitable model for HMD, there are controversies concerning their dystrophin and utrophin status. Using immunocytochemistry and Western blotting, we studied dystrophin, spectrin and utrophin anomalies in the cardiac and skeletal muscles of 6-mo-old male DH. Age- and sex-matched CHF-148 strain albino normal hamsters (NH) served as controls. Sarcolemmal dystrophin staining was much weaker and interruptive in the DH. The densitometric analysis of the immunoblots revealed that dystrophin is reduced in DH by 83% in cardiac muscle (p < 0.0001), and by 50% in skeletal muscle (p < 0.0001). We conclude that sarcolemmal dystrophin distribution is markedly reduced and discontinuous in the cardiac and skeletal muscles of DH, with simultaneous upregulation of utrophin and a varied degree of spectrin labelling. This observation suggests that reduced sarcolemmal dystrophin is associated with membrane hyperpermeability, which leads to progressive muscle degeneration via EICA and segmental necrosis in DH. As in DMD, utrophin appears to play an important compensatory role in hamster dystrophinopathy.
    [Abstract] [Full Text] [Related] [New Search]