These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electron-nuclear double resonance spectroscopy investigation of 4-hydroxybutyryl-CoA dehydratase from Clostridium aminobutyricum: comparison with other flavin radical enzymes.
    Author: Cinkaya I, Buckel W, Medina M, Gomez-Moreno C, Cammack R.
    Journal: Biol Chem; 1997 Aug; 378(8):843-9. PubMed ID: 9377480.
    Abstract:
    A FAD and [4Fe-4S]cluster-containing enzyme from Clostridium aminobutyricum catalyses the reversible dehydration of 4-hydroxybutyryl-CoA to crotonyl-CoA which involves the cleavage of an unactivated C-H bond at the beta-carbon. Transient oxidation of the substrate to an enoxy radical by FAD might facilitate the removal of this beta-proton, whereas no function could be attributed to the [4Fe-4S]cluster. In this paper the organic radical, which is formed by partial reduction of the enzyme with dithionite, was characterised as the neutral flavin semiquinone by EPR spectroscopy in H2O and D2O. The rapid electron-spin relaxation of the flavin semiquinone suggested a magnetic interaction with the [4Fe-4S]cluster. In order to obtain highly resolved information about nuclear spins in the vicinity of this paramagnetic centre, ENDOR spectroscopy was applied. The spectra were compared with those of the neutral semiquinone radicals of ferredoxin-NADP reductase and flavodoxin as well as with that of the anionic semiquinone radical of cholesterol oxidase. All ENDOR spectra showed strong couplings to the 8-methyl protons and to H-6 of the flavin. On addition of the substrates to the corresponding enzymes, the electron density changed significantly only at the 8-position. It decreased in the case of cholesterol oxidase and ferredoxin-NADP reductase, whereas an increase was observed with 4-hydroxybutyryl-CoA dehydratase. The results indicate an interaction of 4-hydroxybutyryl-CoA with the flavin as required by the proposed mechanism. Furthermore, the shift of electron density towards the benzoid ring of FAD in the dehydratase might be due to the location of the [4Fe-4S]cluster next to the 8-position as known from structurally characterised iron-sulfur flavoproteins.
    [Abstract] [Full Text] [Related] [New Search]