These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Exciton interaction among chlorophyll molecules in bacteriochlorophyllaproteins and bacteriochlorophyllareaction center complexes from green bacteria. Author: Olson JM, Ke B, Thompson KH. Journal: Biochim Biophys Acta; 1976 Jun 08; 430(3):524-37. PubMed ID: 938647. Abstract: Absorption and CD spectra of bacteriochlorophyll a proteins and bacteriochlorophyll a reaction center complexes from two strains of Chlorobium limicola were recorded at 77 degrees K. Visual inspection showed that the Qy-band of chlorophyll in either protein was split into at least five components. Analysis of the spectra in terms of asymmetric Gaussian component pairs by means of computer program GAMET showed that six components are necessary to fit the spectra from strain 2K. These six components are ascribed to an exciton interaction between the seven bacteriochlorophyll a molecules in each subunit. The clear difference between the exciton splitting in the two bacteriochlorophyll a proteins shows that the arrangement of the chlorophyll molecules in each subunit must be slightly different. The spectra for the bacteriochlorophyll a reaction center complexes have a component at 834 nm (absorption) and 832 nm (CD) which does not appear in the spectra of the bacteriochlorophyll a proteins. The new component is ascribed to a reaction center complex which is combined with bacteriochlorophyll a proteins to form the bacteriochlorophyll a reaction center complex. The complete absorption (or CD) spectrum for a given bacteriochlorophyll a reaction center complex can be described to a first approximation in terms of the absorption (or CD) spectrum for the corresponding bacteriochlorophyll a protein plus the new component ascribed to the reaction center complex.[Abstract] [Full Text] [Related] [New Search]