These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In situ hybridization analysis of preprotachykinin-A and -B mRNA levels in short-term sodium depletion. Author: Pompei P, Lucas LR, Angeletti S, Massi M, McEwen BS. Journal: Brain Res Mol Brain Res; 1997 Oct 03; 49(1-2):149-56. PubMed ID: 9387874. Abstract: Tachykinins inhibit salt appetite when applied intracranially in a number of brain regions and may function as endogenous inhibitors of sodium intake. To test the hypothesis that induced increases in salt appetite might involve disinhibition via a reduction in endogenous tachykinin expression, we used a semi-quantitative in situ hybridization analysis to investigate changes in brain areas expressing preprotachykinin-A (PPT-A) and preprotachykinin-B (PPT-B) mRNAs of rats after 1 day of sodium depletion (1d Na dep). PPT-A mRNA levels were detected in neurons of the olfactory tubercle (Tu), the nucleus of the olfactory tubercle (LOT), the dorsal and ventral caudate-putamen (d-CPu and v-CPu), the bed nucleus of the stria terminalis (BNST), the medial preoptic area (mPOA), the habenula (Hb) and the postero-dorsal part of the amygdala (MePD). PPT-B mRNA levels were measured in fundus striati (FStr), d-CPu, v-CPu, BNST, mPOA, dorsomedial hypothalamic nucleus (DMD), arcuate nucleus (Arc), central amygdaloid nucleus (CeL), basolateral amygdaloid nucleus (BLV), LOT, Hb and basal nucleus of Meynert (B). 1d Na dep reduced by 33-61% the mean number of PPT-A grains/cell in Tu, LOT, d-CPu, BNST, mPOA, Hb and MePD compared to control animals. Levels of PPT-B mRNA were not reduced as much by 1d Na dep, although statistically significant reductions of 26, 34 and 17% were found in v-CPu, BNST and B, respectively. These findings, therefore, support the hypothesis that endogenous tachykinins exert an inhibitory influence over sodium appetite.[Abstract] [Full Text] [Related] [New Search]