These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neuroprotective effects of inhibiting poly(ADP-ribose) synthetase on focal cerebral ischemia in rats.
    Author: Takahashi K, Greenberg JH, Jackson P, Maclin K, Zhang J.
    Journal: J Cereb Blood Flow Metab; 1997 Nov; 17(11):1137-42. PubMed ID: 9390644.
    Abstract:
    Poly(adenosine 5'-diphosphoribose) synthetase (PARS) has been described as an important candidate for mediation of neurotoxicity by nitric oxide. In the current study, we demonstrate for the first time that in vivo administration of a potent PARS inhibitor, 3,4-dihydro 5-[4-1(1-piperidinyl) butoxy]-1(2H)-isoquinolinone, leads to a significant reduction of infarct volume in a focal cerebral ischemia model in the rat. Focal cerebral ischemia was produced by cauterization of the right distal middle cerebral artery (MCA) with bilateral temporary common carotid artery occlusion for 90 minutes. 3,4-Dihydro 5[4-(1-piperidinyl) butoxy]-1(2H)-isoquinolinone was dissolved in dimethyl sulfoxide and injected intraperitoneally. Animals were treated 2 hours before MCA occlusion (control, n = 14; 5 mg/kg, n = 7; 10 mg/kg, n = 7; 20 mg/kg, n = 7; 40 mg/kg, n = 7), and 2 hours after MCA occlusion (same doses as before treatment). Twenty-four hours after MCA occlusion, the total infarct volume was measured using 2,3,5-triphenyltetrazolium chloride. Inhibition of PARS leads to a significant decrease in the damaged volume in the 5 mg/kg-treated group (106.7 +/- 23.2 mm3; mean +/- SD, P < 0.002), the 10 mg/kg-treated group (76.4 +/- 16.8 mm3, P < 0.001), and the 20 mg/kg-treated group (110.2 +/- 42.0 mm3, P < 0.02) compared with the control group (165.2 +/- 34.0 mm3). The substantial reduction in infarct volume indicates that the activation of PARS may play an important role in the pathogenesis of brain damage in cerebral ischemia through intracellular energy depletion.
    [Abstract] [Full Text] [Related] [New Search]