These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Postnatal development and sex difference in neurons containing estrogen receptor-alpha immunoreactivity in the preoptic brain, the diencephalon, and the amygdala in the rat.
    Author: Yokosuka M, Okamura H, Hayashi S.
    Journal: J Comp Neurol; 1997 Dec 08; 389(1):81-93. PubMed ID: 9390761.
    Abstract:
    Estrogen has been considered as a key substance that induces sexual differentiation of the brain during fetal and neonatal life in the rat. Thus, to define the brain regions involved in the brain sexual differentiation, we examined the regions where the estrogen receptor (ER) is located in the developing rat brain. We examined immunohistochemical distribution of the cells containing estrogen receptor-alpha (ER-alpha) in the preoptic region, the diencephalon, and the amygdala in male and female rats on postnatal days 1-35 (PD1-PD35). The antibody used recognizes ER-alpha equally well for both occupied and unoccupied forms. ER-alpha immunostaining was restricted to the cell nuclei of specific cell groups. In PD1 rats, ER-alpha-immunoreactive (ER-IR) signals were detected in the lateral septum, the organum vasculosum lamina terminalis, the medial preoptic nucleus (MPN), the median preoptic nucleus, the bed nucleus of the stria terminalis, the hypothalamic periventricular nucleus, the lateral habenula, the posterodorsal part of the medial amygdala nucleus, the posterior part of the cortical amygdala nucleus, the hypothalamic ventromedial nucleus (VMH), the hypothalamic arcuate nucleus, and the posterior hypothalamic periventricular nucleus. The distribution pattern of ER-IR cells in the newborn rat was much the same as that in the adult in the preoptic-hypothalamic and amygdala regions. Moreover, the signals in the MPN and the VMH were stronger in the female than in the male, perhaps reflecting the ability ofestrogen generated by aromatization of testosterone in the male to down-regulate the ER signal. Thus, the brain regions showing sex differences may be sites of sexual differentiation of the brain by aromatizable androgen during the neonatal period.
    [Abstract] [Full Text] [Related] [New Search]