These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Design, synthesis and conformational analysis of hGM-CSF(13-31)-Gly-Pro-Gly-(103-116).
    Author: Noli N, Gurrath M, Rovero P, Pegoraro S, Revoltella RP, Schievano E, Mammi S, Peggion E.
    Journal: J Pept Sci; 1997; 3(5):323-35. PubMed ID: 9391907.
    Abstract:
    On the basis of the X-ray structure and results from structure-activity relationship studies, the following GM-CSF analogue was designed and synthesized by solid-phase methodology: hGM-CSF[13-31]-Gly-Pro-Gly-[103-116]-NH2. This analogue was constructed to comprise helices A and D of the native hGM-CSF, covalently linked in an antiparallel orientation by the tripeptide spacer Gly-Pro-Gly, which is known as a turn-inducing sequence. The conformational analysis of the analogue by CD spectroscopy revealed an essentially random structure in water, while alpha-helix formation was observed upon addition of TFE. In 40% TFE the helix content was approximately 45%. By two-dimensional NMR experiments in 1:1 water/trifluoroethanol mixture two helical sequences were identified comprising the segments corresponding to helix A and helix D. In addition to medium-range NOESY connectivities, a long-range cross-peak was found involving the leucine residues at positions 13 and 35. Based on the experimentally derived data (54 NOEs), the structure was refined by restrained molecular dynamics simulations over 120 ps at various temperatures. A representative conformation derived from the computer simulation is mainly characterized by two helical segments connected by a loop region. The overall three-dimensional structure of the analogue is comparable to the X-ray structure of hGM-CSF in that helices A and D are oriented in an antiparallel fashion, forming a two alpha-helix bundle. Nevertheless, there are small differences in the topology of the helices between the solution structure of the designed analogue and the X-ray structure of hGM-CSF. The possible implications of these conformational features at the effects of biological activity are discussed.
    [Abstract] [Full Text] [Related] [New Search]