These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High density lipoprotein particle size restriction in apolipoprotein A-I(Milano) transgenic mice.
    Author: Bielicki JK, Forte TM, McCall MR, Stoltzfus LJ, Chiesa G, Sirtori CR, Franceschini G, Rubin EM.
    Journal: J Lipid Res; 1997 Nov; 38(11):2314-21. PubMed ID: 9392429.
    Abstract:
    Human carriers of apolipoprotein A-I(Milano) (Arg173 --> Cys substitution in apolipoprotein A-I) are characterized by an HDL deficiency in which small, dense HDL accumulate in plasma. Because affected individuals are heterozygous for this mutation, the full impact of apolipoprotein A-I(Milano) (apoA-I(Milano)) on HDL-cholesterol metabolism is unknown. In this study, apoA-I(Milano) transgenic mice were used to evaluate the extent of apoA-I(Milano) dimerization and HDL particle size restriction in the absence of wild-type apoA-I. Murine apoA-I knockout mice were utilized to express apoA-I(Milano) and human apoA-II in the presence of wild-type, human apoA-I (apoA-IMilano/A-Iwt/A-II) and in its absence (apoA-IMilano/A-II). Plasma HDL-cholesterol concentrations were similar (30 mg/dl) in both lines of apoA-I(Milano) transgenic mice. In the apoA-IMilano/A-Iwt/A-II phenotype, 14% of the apoA-I(Milano) formed homodimers and 33% formed heterodimers with apoA-II. ApoA-I(Milano) homodimers increased by 71% in the apoA-IMilano/A-II transgenics and was associated with an abundance of small, 7.6-nm HDL3-sized particles compared to the 9.5, 8.3, and 7.6-nm-sized particles in apoA-IMilano/A-Iwt/A-II mice. The unesterified cholesterol/cholesteryl ester mole ratio of HDL was elevated by 45% in apoA-IMilano/A-Iwt/A-II mice and by 90% in apoA-IMilano/A-II transgenics compared to wild-type (human apoA-I/A-II). Both apoA-I(Milano) transgenics possessed normal levels of plasma LCAT activity, but endogenous cholesterol esterification rates were reduced by 50% compared to controls. Thus, HDL particle size restriction was not the result of impaired LCAT activation; rather, dimerization of apoA-I(Milano) limited the esterification of cholesterol on endogenous HDL. In the absence of wild-type apoA-I, the more extensive dimerization of apoA-I(Milano) severely limited cholesteryl ester accumulation on plasma HDL accounting for the abundance of small, 7.6-nm HDL3 particles in apoA-IMilano/A-II mice.
    [Abstract] [Full Text] [Related] [New Search]